# Introduction To Machine Learning & Its Scope

Date : 8th July 2021 | Speaker : Ayon Roy



# Hello Buddy! I am Ayon Roy

B.Tech CSE ( 2017-2021 )

Data Science Intern @ Internshala (India's Leading Internship Provider Platform)

Brought Kaggle Days Meetup Community in India for the 1st time

If you haven't heard about me yet, you might have been living under the rocks. Wake up !!

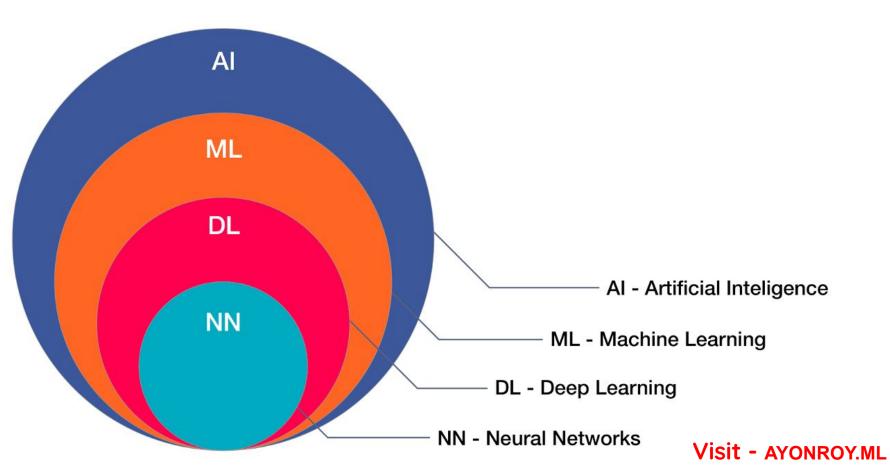
## Agenda

- What is Machine Learning ?
- How to start Machine Learning ?
- Initial steps in a Machine Learning Process
- A brief Intro to Data Pre-Processing, Exploratory Data Analysis, Data Visualization
- What's the current scenario & the scope of ML ?



# What is Machine Learning ?

#### **Graphical Representation**



A field of study that gives computers the capability to learn without being explicitly programmed.

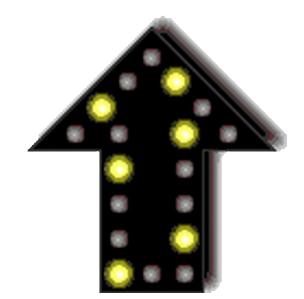
Machine learning is applied using Algorithms to process the data and get trained for delivering future predictions without human intervention. The inputs for Machine Learning is the set of instructions or data or observations.



#### **Applications of Machine Learning**

| APPLICATION                  | POTENTIAL ANNUAL VALUE BY 2026 | KEY DRIVERS FOR ADOPTION                                                |
|------------------------------|--------------------------------|-------------------------------------------------------------------------|
| Robot-assisted surgery       | \$40B                          | Technological advances in robotic solutions for more types of surgery   |
| Virtual nursing assistants   | 20                             | Increasing pressure caused<br>by medical labor shortage                 |
| Administrative workflow      | 18                             | Easier integration with existing technology infrastructure              |
| Fraud detection              | 17                             | Need to address increasingly complex service and payment fraud attempts |
| Dosage error reduction       | 16                             | Prevalence of medical errors,<br>which leads to tangible penalties      |
| Connected machines           | 14                             | Proliferation of connected machines/devices                             |
| Clinical trial participation | 13                             | Patent cliff; plethora of data;<br>outcomes-driven approach             |
| Preliminary diagnosis        | 5                              | Interoperability/data architecture<br>to enhance accuracy               |
| Automated image diagnosis    | 3                              | Storage capacity; greater<br>trust in AI technology                     |
| Cybersecurity                | 2                              | Increase in breaches;<br>pressure to protect health data                |

# How to start Machine Learning





## Start with Maths for Machine Learning

# But why should I do Maths first for Machine Learning ?

- Week 1 : Linear Algebra [B] https://www.khanacademy.org/math/linear-algebra
- Week 2 : Calculus [B] https://www.youtube.com/playlist?list=PLZHQObOWTQDMsr9K-rj53DwVRMYO3t5Yr or https://www.mathsisfun.com/calculus/; want theoretical notes, find it at https://the-learning-machine.com/article/machinelearning/calculus.
- Week 3 : Probability [B] https://www.edx.org/course/introduction-probability-science-mitx-6-041x-2
- Week 4 : Statistics [B] http://alex.smola.org/teaching/cmu2013-10-701/stats.html
- Algorithms (Only if you want to learn proper software development) [Highly optional] This is an overview of what the students study as the subject Data Structures & Algorithm . So if you are fluent with this part , you can skip this !! https://www.edx.org/course/algorithm-design-analysis-pennx-sd3x

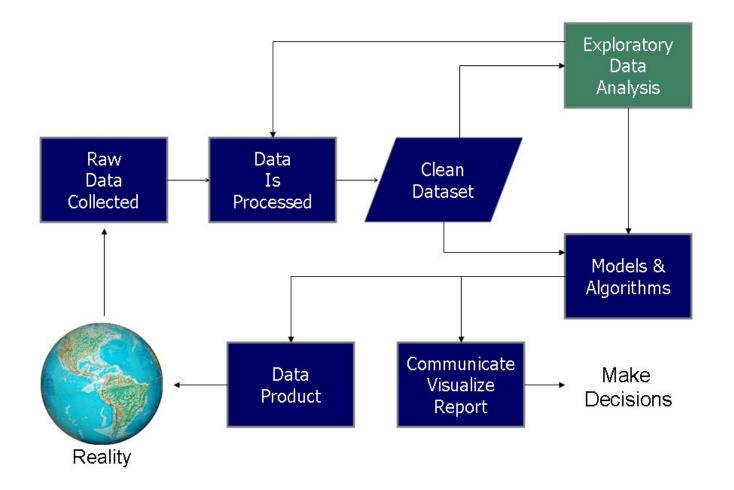
# Start with Python &

## try to implement those Mathematical Concepts

# Start exploring Libraries & then start Machine Learning Courses

- Introduction to python for data science [B] https://www.datacamp.com/courses/intro-to-python-for-data-science
- Want to dive deeper into Data Visualization & Pre-Processing ? Look into Data Visualization & Pre-Processing section in miscellaneous resources. [Highly optional]
- Want to explore the field of Deep Learning ? See the Deep Learning Section in miscellaneous resources . [Highly optional]
- Want to explore the field of Natural Language Processing [ NLP } ? See the Natural language Processing Section in miscellaneous resources . [ Highly optional ]
- See how ML codes are written and made to work at > https://github.com/maykulkarni/Machine-Learning-Notebooks or https://github.com/GokuMohandas/practicalAl/blob/master/README.md . [Highly optional]
- Find useful resources here at https://github.com/ujjwalkarn/Machine-Learning-Tutorials/blob/master/README.md . [ Highly optional ]

## Initial Steps in a Machine Learning Process



# What is Data Pre-Processing ?

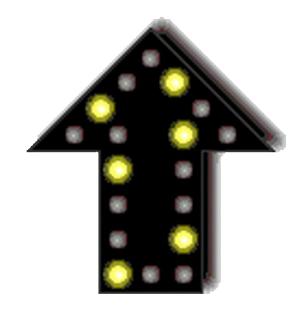
It is a technique that transforms raw data into an understandable format.

# Why do we need it ?

Raw data (Real world data) is always messy and that data cannot be sent through a model. That would cause certain errors.

So we need to preprocess data before sending through further analysis.

## Steps to be followed



#### **Read the data**

# Read the data in the CSV file using pandas df = pd.read\_csv('../input/creditcard.csv') df.head()

|   | Time | V1        | V2        | V3       | V4        | V5        | V6        | V7        | VS        | V9        |    | V21       | V22       | V23       | V24       |      |
|---|------|-----------|-----------|----------|-----------|-----------|-----------|-----------|-----------|-----------|----|-----------|-----------|-----------|-----------|------|
| 0 | 0.0  | -1.359807 | -0.072781 | 2.536347 | 1.378155  | -0.338321 | 0.462388  | 0.239599  | 0.098698  | 0.363787  | 44 | -0.018307 | 0.277838  | -0.110474 | 0.066928  | 0.1  |
| 1 | 0.0  | 1.191857  | 0.266151  | 0.166480 | 0.448154  | 0.060018  | -0.082361 | -0.078803 | 0.085102  | -0.255425 | 23 | -0.225775 | -0.638672 | 0.101288  | -0.339846 | 0.1  |
| 2 | 1.0  | -1.358354 | -1.340163 | 1.773209 | 0.379780  | -0.503198 | 1.800499  | 0.791461  | 0.247676  | -1.514654 |    | 0.247998  | 0.771679  | 0.909412  | -0.689281 | -0.3 |
| 3 | 1.0  | -0.966272 | -0.185226 | 1.792993 | -0.863291 | -0.010309 | 1.247203  | 0.237609  | 0.377436  | -1.387024 |    | -0.108300 | 0.005274  | -0.190321 | -1.175675 | 0.6  |
| 4 | 2.0  | -1.158233 | 0.877737  | 1.548718 | 0.403034  | -0.407193 | 0.095921  | 0.592941  | -0.270533 | 0.817739  |    | -0.009431 | 0.798278  | -0.137458 | 0.141267  | -0.2 |

Fig 1 : Dataset

## Checking the Missing Values

# Looking at the ST\_NUM column
print df['ST\_NUM']
print df['ST\_NUM'].isnull()

| Out: |       |
|------|-------|
| 0    | 104.0 |
| 1    | 197.0 |
| 2    | NaN   |
| 3    | 201.0 |
| 4    | 203.0 |
| 5    | 207.0 |
| 6    | NaN   |
| 7    | 213.0 |
| 8    | 215.0 |
| Out: |       |
| Θ    | False |
| 1    | False |
| 2    | True  |
| 3    | False |
| 4    | False |
| 5    | False |
| 6    | True  |
| 7    | False |
| 8    | False |

## **Replacing the Missing Values**

A very common way to replace missing values is using a median.

# Replace using median median = df['NUM\_BEDROOMS'].median() df['NUM\_BEDROOMS'].fillna(median, inplace=True)

## Standardizing the data

```
# Standardizing the features
df['Vamount'] =
StandardScaler().fit_transform(df['Amount'].values.reshape(-1,1))
df['Vtime'] =
StandardScaler().fit_transform(df['Time'].values.reshape(-1,1))
df = df.drop(['Time', 'Amount'], axis = 1)
df.head()
```

| V22       | V23       | V24       | V25       | V26       | V27       | V28       | Class | Vamount   | Vtime     |
|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-------|-----------|-----------|
| 0.277838  | -0.110474 | 0.066928  | 0.128539  | -0.189115 | 0.133558  | -0.021053 | 0     | 0.244964  | -1.996583 |
| -0.638672 | 0.101288  | -0.339846 | 0.167170  | 0.125895  | -0.008983 | 0.014724  | 0     | -0.342475 | -1.996583 |
| 0.771679  | 0.909412  | -0.689281 | -0.327642 | -0.139097 | -0.055353 | -0.059752 | 0     | 1.160686  | -1.996562 |
| 0.005274  | -0.190321 | -1.175575 | 0.647376  | -0.221929 | 0.062723  | 0.061458  | 0     | 0.140534  | -1.996562 |
| 0.798278  | -0.137458 | 0.141267  | -0.206010 | 0.502292  | 0.219422  | 0.215153  | 0     | -0.073403 | -1.996541 |

Fig 7 : Standardized dataset

## **Exploratory Data Analysis**



# What is Exploratory Data Analysis ?

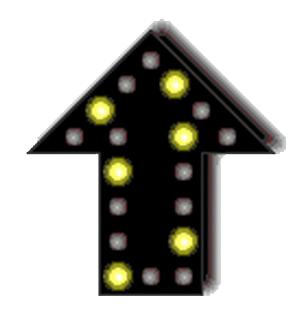
A critical process of performing initial investigations on data so as to discover patterns,to spot anomalies,to test hypothesis and to check assumptions with the help of summary statistics and graphical representations.

# Why do we need it ?

- 1. Detection of mistakes & missing data
- 2. Checking of assumptions
- 3. Preliminary selection of appropriate models
- 4. Determining relationships among the explanatory variables

With EDA, we can make sense of the data we have and then figure out what questions we want to ask and how to frame them

# Major Steps to be followed





### **Import the Libraries**

# Importing required libraries. import pandas as pd import numpy as np import seaborn as sns #visualisation import matplotlib.pyplot as plt #visualisation %matplotlib inline sns.set(color\_codes=True)

## Check the type of Data

# Checking the data type
df.dtypes

| Make              | object  |
|-------------------|---------|
| Model             | object  |
| Year              | int64   |
| Engine Fuel Type  | object  |
| Engine HP         | float64 |
| Engine Cylinders  | float64 |
| Transmission Type | object  |
| Driven_Wheels     | object  |
| Number of Doors   | float64 |
| Market Category   | object  |
| Vehicle Size      | object  |
| Vehicle Style     | object  |
| highway MPG       | int64   |
| city mpg          | int64   |
| Popularity        | int64   |
| MSRP              | int64   |
| dtype: object     |         |



## **Dropping Irrelevant Columns**

# Dropping irrelevant columns
df = df.drop(['Engine Fuel Type', 'Market Category', 'Vehicle Style',
'Popularity', 'Number of Doors', 'Vehicle Size'], axis=1)
df.head(5)

|   | Make | Model      | Year | Engine HP | Engine Cylinders | Transmission Type | Driven_Wheels    | highway MPG | city mpg | MSRP  |
|---|------|------------|------|-----------|------------------|-------------------|------------------|-------------|----------|-------|
| 0 | BMW  | 1 Series M | 2011 | 335.0     | 6.0              | MANUAL            | rear wheel drive | 26          | 19       | 46135 |
| 1 | BMW  | 1 Series   | 2011 | 300.0     | 6.0              | MANUAL            | rear wheel drive | 28          | 19       | 40650 |
| 2 | BMW  | 1 Series   | 2011 | 300.0     | 6.0              | MANUAL            | rear wheel drive | 28          | 20       | 36350 |
| 3 | BMW  | 1 Series   | 2011 | 230.0     | 6.0              | MANUAL            | rear wheel drive | 28          | 18       | 29450 |
| 4 | BMW  | 1 Series   | 2011 | 230.0     | 6.0              | MANUAL            | rear wheel drive | 28          | 18       | 34500 |

Dropping irrelevant columns.

### **Renaming the Columns**

#### # Renaming the column names

df = df.rename(columns={"Engine HP": "HP", "Engine Cylinders": "Cylinders", "Transmission Type": "Transmission", "Driven\_Wheels": "Drive Mode", "highway MPG": "MPG-H", "city mpg": "MPG-C", "MSRP": "Price" }) df.head(5)

|   | Make | Model      | Year | HP    | Cylinders | Transmission | Drive Mode       | MPG-H | MPG-C | Price |
|---|------|------------|------|-------|-----------|--------------|------------------|-------|-------|-------|
| 0 | BMW  | 1 Series M | 2011 | 335.0 | 6.0       | MANUAL       | rear wheel drive | 26    | 19    | 46135 |
| 1 | BMW  | 1 Series   | 2011 | 300.0 | 6.0       | MANUAL       | rear wheel drive | 28    | 19    | 40650 |
| 2 | BMW  | 1 Series   | 2011 | 300.0 | 6.0       | MANUAL       | rear wheel drive | 28    | 20    | 36350 |
| 3 | BMW  | 1 Series   | 2011 | 230.0 | 6.0       | MANUAL       | rear wheel drive | 28    | 18    | 29450 |
| 4 | BMW  | 1 Series   | 2011 | 230.0 | 6.0       | MANUAL       | rear wheel drive | 28    | 18    | 34500 |

Renaming the column name.

### **Removing the Duplicates**

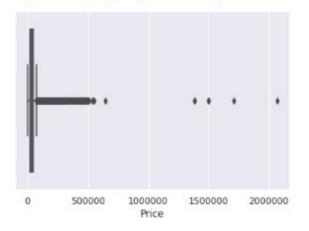
# Dropping the duplicates
df = df.drop\_duplicates()
df.head(5)

|   | Make | Model      | Year | HP    | Cylinders | Transmission | Drive Mode       | MPG-H | MPG-C | Price |
|---|------|------------|------|-------|-----------|--------------|------------------|-------|-------|-------|
| 0 | BMW  | 1 Series M | 2011 | 335.0 | 6.0       | MANUAL       | rear wheel drive | 26    | 19    | 46135 |
| 1 | BMW  | 1 Series   | 2011 | 300.0 | 6.0       | MANUAL       | rear wheel drive | 28    | 19    | 40650 |
| 2 | BMW  | 1 Series   | 2011 | 300.0 | 6.0       | MANUAL       | rear wheel drive | 28    | 20    | 36350 |
| 3 | BMW  | 1 Series   | 2011 | 230.0 | 6.0       | MANUAL       | rear wheel drive | 28    | 18    | 29450 |
| 4 | BMW  | 1 Series   | 2011 | 230.0 | 6.0       | MANUAL       | rear wheel drive | 28    | 18    | 34500 |

## **Detecting the Outliers**

sns.boxplot(x=df['Price'])

<matplotlib.axes.\_subplots.AxesSubplot at 0x7f69f68edc18>



### **Correlation Matrix etc.**

|                     | -       |         |          |           |                     |             |                |               |                      |                  |           |         |  |
|---------------------|---------|---------|----------|-----------|---------------------|-------------|----------------|---------------|----------------------|------------------|-----------|---------|--|
| quality             | 1       | 0.44    | 0.099    | 0.054     | 0.0082              | -0.0092     | -0.098         | -0.11         | -0.17                | -0.19            | -0.21     | -0.31   |  |
| alcohol             | 0.44    | 1       | 0.12     | -0.017    | -0.25               | -0.076      | -0.45          | -0.12         | -0.45                | 0.068            | -0.36     | -0.78   |  |
| pH                  | 0.099   | 0.12    | 1        | 0.16      | -0.00062            | -0.16       | -0.19          | -0.43         | 0.0023               | -0.032           | -0.09     | -0.094  |  |
| sulphates           | 0.054   | -0.017  | 0.16     | 1         | 0.059               | 0.062       | -0.027         | -0.017        | 0.13                 | -0.036           | 0.017     | 0.074   |  |
| free sulfur dioxide | 0.0082  | -0.25   | -0.00062 | 0.059     | 1                   | 0.094       | 0.3            | -0.049        | 0.62                 | -0.097           | 0.1       | 0.29    |  |
| citric acid         | -0.0092 | -0.076  | -0.16    | 0.062     | 0.094               | 1           | 0.094          | 0.29          | 0.12                 | -0.15            | 0.11      | 0.15    |  |
| residual sugar      | -0.098  | -0.45   | -0.19    | -0.027    | 0.3                 | 0.094       | 1              | 0.089         | 0.4                  | 0.064            | 0.089     | 0.84    |  |
| fixed acidity       | -0.11   | -0.12   | -0.43    | -0.017    | -0.049              | 0.29        | 0.089          | 1             | 0.091                | -0.023           | 0.023     | 0.27    |  |
| otal sulfur dioxide | -0.17   | -0.45   | 0.0023   | 0.13      | 0.62                | 0.12        | 0.4            | 0.091         | 1                    | 0.089            | 0.2       | 0.53    |  |
| volatile acidity    | -0.19   | 0.068   | -0.032   | -0.036    | -0.097              | -0.15       | 0.064          | -0.023        | 0.089                | 1                | 0.071     | 0.027   |  |
| chlorides           | -0.21   | -0.36   | -0.09    | 0.017     | 0.1                 | 0.11        | 0.089          | 0.023         | 0.2                  | 0.071            | 1         | 0.26    |  |
| density             | -0.31   | -0.78   | -0.094   | 0.074     | 0.29                | 0.15        | 0.84           | 0.27          | 0.53                 | 0.027            | 0.26      | 1       |  |
|                     | quality | alcohol | Hd       | sulphates | free sulfur dioxide | citric acid | residual sugar | fixed acidity | total sulfur dioxide | volatile acidity | chlorides | density |  |

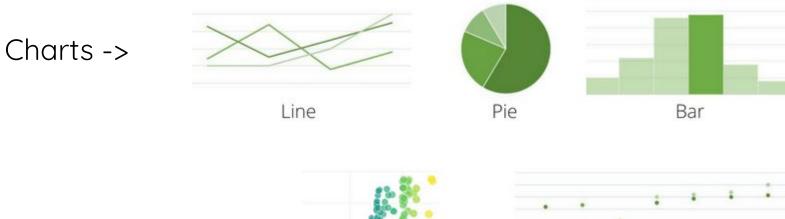
## What's Data Visualization ?

Data visualization is the graphical representation of information and data.

By using visual elements like charts, graphs, and maps, data visualization tools provide an accessible way to see and understand trends, outliers, and patterns in data.

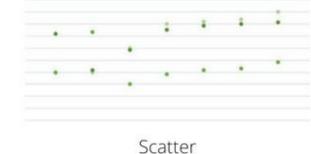
Visit - ayonro

### **Difft. Types of Data Visualization methods**



**Bubble** 

Plots ->

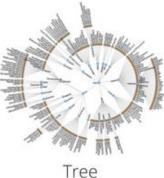


### **Difft. Types of Data Visualization methods**

Maps ->

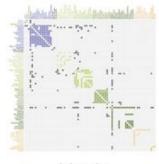






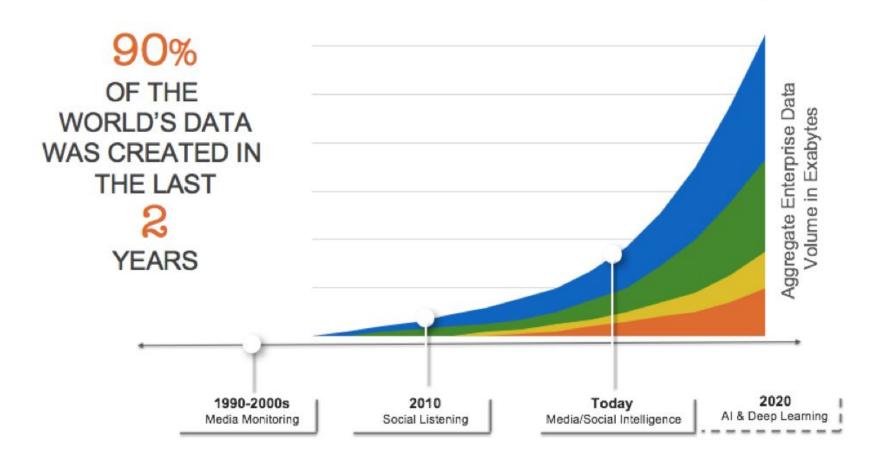


Dot distribution



Matrix

# What's the Current Scenario ?

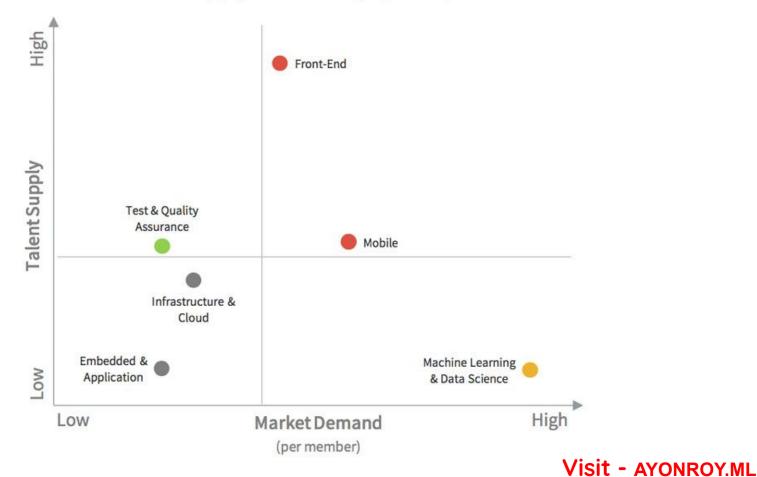


#### But why Machine Learning now?

- 1. The sharp decrease in costs associated with data storage and processing.
- 2. The advent of the Internet economy and the explosion in mobile apps.
- 3. The abundance of open-source tools.
- 4. The development of a wealth of innovative ML and DL algorithms.
- 5. Availability of GPUs etc.

## The Scope of Machine Learning

Supply & Demand by Specialty



## Get the resources at

- 1. <u>https://github.com/aayoonn/100DaysOfMLCode</u>
- 2. <u>https://blog.ayonroy.ml/2020/12/01/personalized-guide-</u> by-ayon-roy

### GO FOR IT !



#### Let me answer your Questions now.

#### Finally, it's your time to speak.





#### Questions ? Any Feedbacks ? Did you like the talk? Tell me about it.

#### If you think I can help you, connect with me via

**Email** : aayoonn@gmail.com

LinkedIn : https://www.linkedin.com/in/aayoonn/

Website : https://AYONROY.ML/