

Neural Networks

Explore ML

Date: 4th September, 2019 | Event: Google AI, Explore ML | Speaker: Ayon Roy

Hello BPITians!

I am Ayon Roy

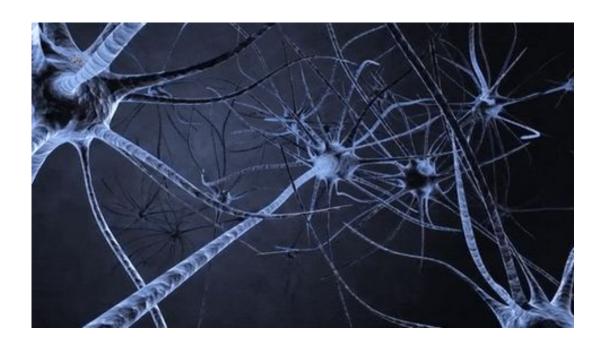
B.Tech CSE (2017-2021)

Ex-Summer Intern at MateLabs, Bengaluru (World's First Horizontal Al Startup)

Email: ayon.roy2000@gmail.com

Telegram / Github / LinkedIn Username: ayonroy2000

Website: https://AYONROY.ML/

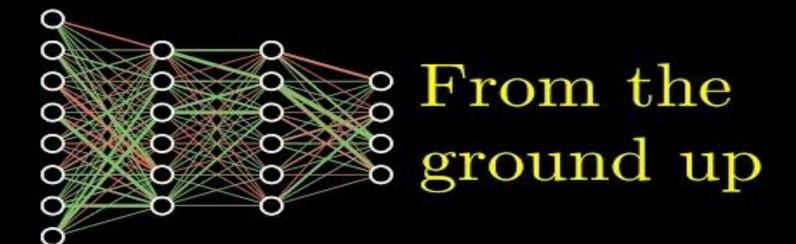

If you haven't heard about me yet, you might have been living under the rocks. Wake up!!

Agenda (4-09-2019)

- Introduction to Structure and operation of neural network
- Introduction to Tensorflow Playground
- Activity: TensorFlow Playground Neural Network Exercises
- Activity: Teachable Machine and the Limits of Neural Networks

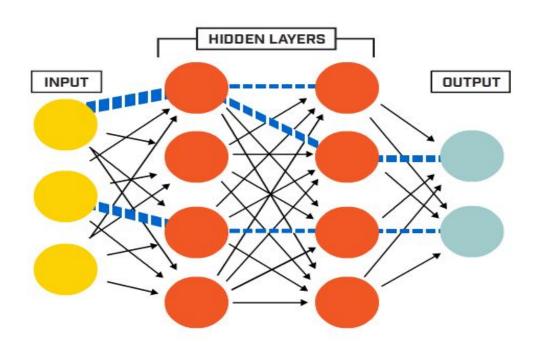
Neural Networks

Google Al | Explore ML

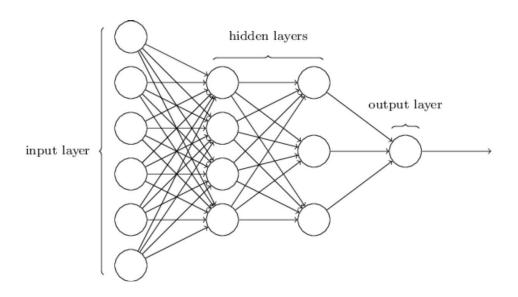

Let's Play

g.co/teachablemachine

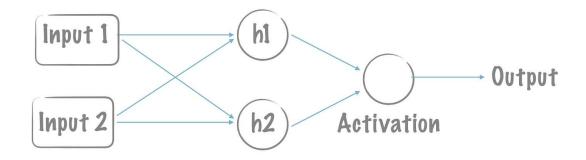
If privacy is not an issue, please use your laptop's webcam for this activity.

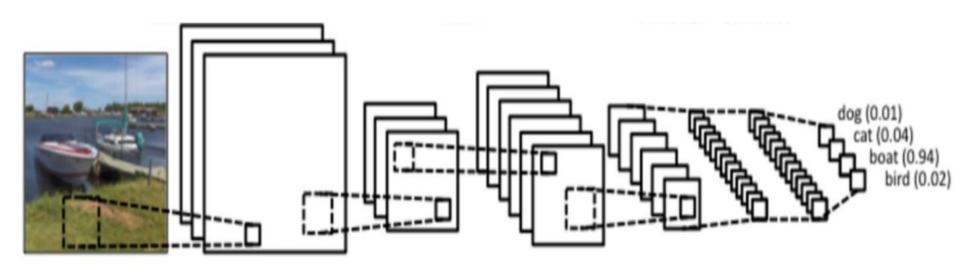

See a Neural Network Demo at http://bit.do/BPIT1

Neural Networks

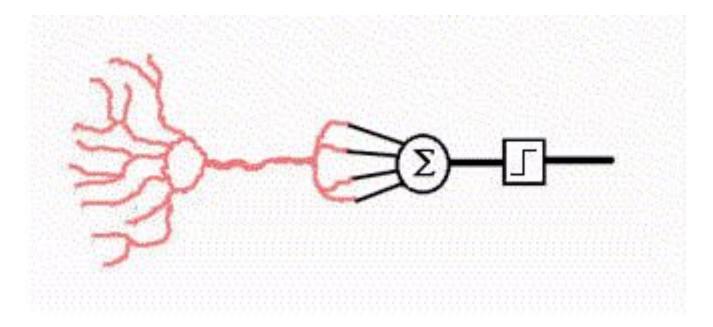


What are Neural Networks?


Neural Networks


Its like Perceptrons are together in a defined fashion

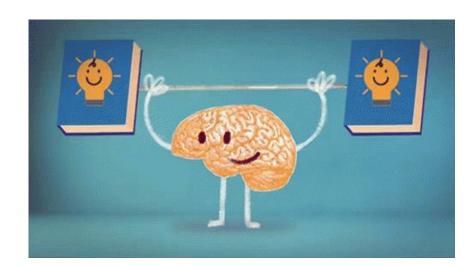
Two Layered Neural Network


These array of perceptrons form the Neural Nets

Computer System inspired by biological networks of neurons that learn progressively i.e which improves performance to do tasks; by considering examples generally without task specific programming.

Why Neural Networks?

Problem before Neural Networks were introduced


Computers used to follow a set of instructions to solve a problem

But what now?

Neural Networks learn by example. So now computers can do things what we don't exactly know how to do.

Motivation behind Neural Networks?

Application of Neural Networks

Is it only here?

It's here too

Speech Recognition

- Multilayer networks with recurrent connections
- Kohonen self-organizing feature map

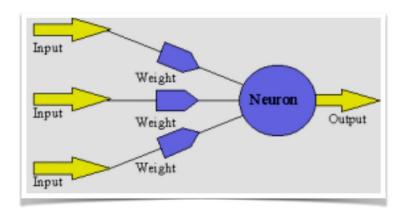
Character Recognition

- Backpropagation neural networks.
- Neocognitron

Signature Verification, Face Recognition etc.

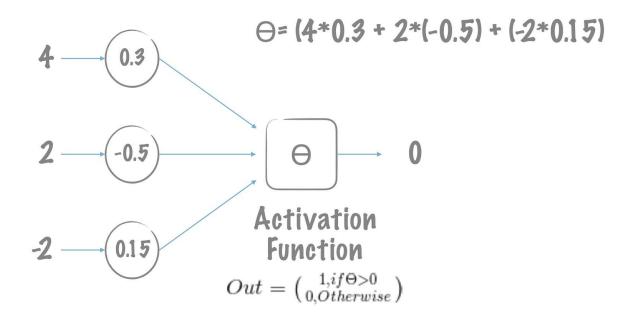
But how it works?

Single Layer & Multilayer Perceptron


Perceptron

The elementary entity of a neural network.

The most basic form of neural network which can also learn

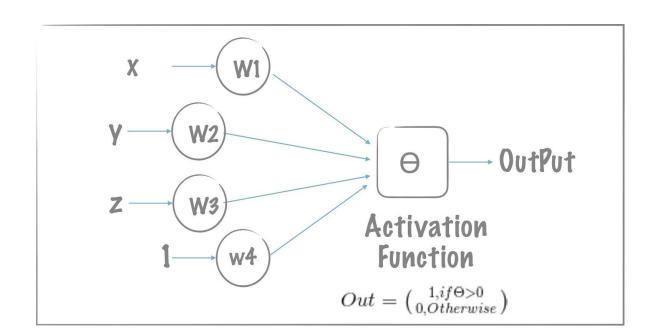


Perceptron

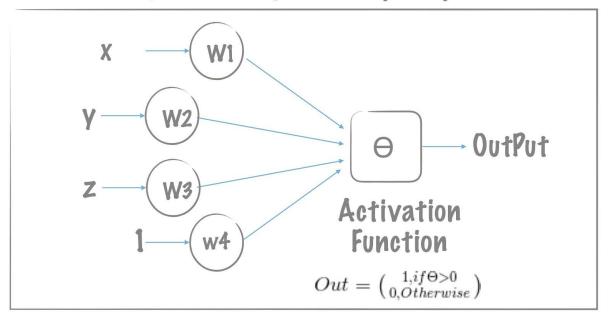
A Basic Linear discriminant Classifier

How Perceptron Work

Activation Functions


Activation function	Equation	Example	1D Graph
Unit step (Heaviside)	$\phi(z) = \begin{cases} 0, & z < 0, \\ 0.5, & z = 0, \\ 1, & z > 0, \end{cases}$	Perceptron variant	
Sign (Signum)	$\phi(z) = \begin{cases} -1, & z < 0, \\ 0, & z = 0, \\ 1, & z > 0, \end{cases}$	Perceptron variant	
Linear	$\phi(z) = z$	Adaline, linear regression	
Piece-wise linear	$\phi(z) = \begin{cases} 1, & z \ge \frac{1}{2}, \\ z + \frac{1}{2}, & -\frac{1}{2} < z < \frac{1}{2}, \\ 0, & z \le -\frac{1}{2}, \end{cases}$	Support vector machine	
Logistic (sigmoid)	$\phi(z) = \frac{1}{1 + e^{-z}}$	Logistic regression, Multi-layer NN	-
Hyperbolic tangent	$\phi(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$	Multi-layer NN	

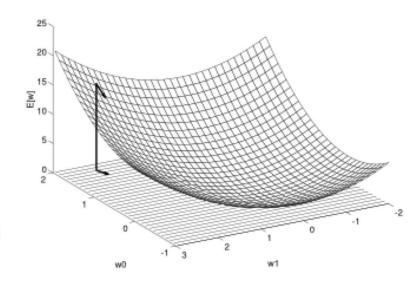
Let's train a Perceptron to mimic this pattern

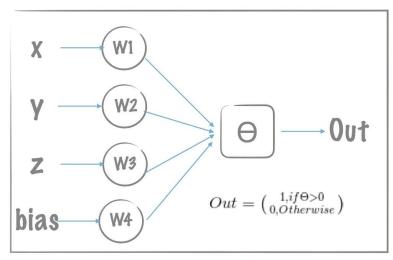

Training Set Tlout)

х	Y	Z	out
0	0	1	0
1	1	1	1
1	0	1	1
0	1	1	0

Perceptron Model

Training Rules: Wi = Wi + Δ Wi Δ W = - η * (target output - perceptron output)*X η is learning rate for perceptron

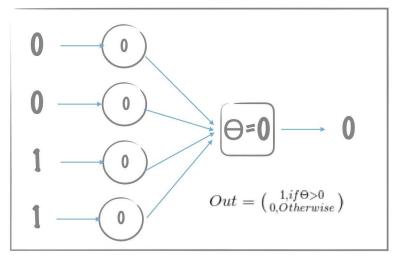

Let's learn wi such that it minimizes the squared error


$$E[\vec{w}] \equiv \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2$$

$$\Delta w_i = -\eta \frac{\partial E}{\partial w_i}$$

On simplifying

$$\Delta w_i = \eta \sum_{d \in D} (t_d - o_d) x_{id}$$


 $Wi = Wi + \Delta Wi$ $\Delta Wi = -\eta * \Gamma (0 + 1) - \Gamma (0 + 1) + \chi i$ η is learning rate for perceptron

Training Set 1

	X	Y	Z	bias
	0	0	1	1
	1	1	1	1
poch 1	1	0	1	1
	0	1	1	1
	0	0	1	1
mach 2	1	1	1	1
epoch 2	1	0	1	1
	0	1	1	1

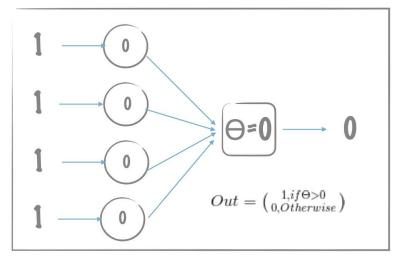
OUT
0
1
1
0
0
1
1
0

Assign random values to Weight Vector([W1,W2,W3,W4])

Training Set

	X	y	Z	bias
	0	0	1	1
	1	1	1	1
	1	0	1	1
6	0	1	1	1
	0	0	1	1
	1	1	1	1
	1	0	1	1
	0	1	1	1

epoch 1


T(out)

(tuo	Weights					
out	wl	w2	w3	w4		
0	0	0	0	0		
1						
1						
0						
0						
1						
1						
0						

P(out)

14			
	0	ut	
		0	

Δw1	Δw2	Δw3	Δw4		
0	0	0	0		

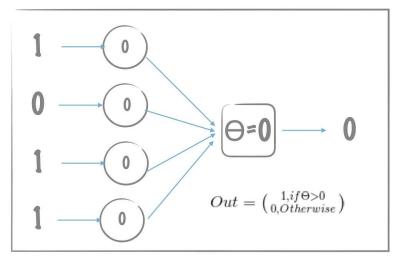
Training Set

X	Y	Z	bias
0	0	1	1
1	1	1	1
1	0	1	1
0	1	1	1
0	0	1	1
1	1	1	1
1	0	1	1
0	1	1	1

epoch 1

T(out)

out


	9		
wl	w2	w3	w4
0	0	0	0
0	0	0	0

Weights

P(out)

out	
0	
0	

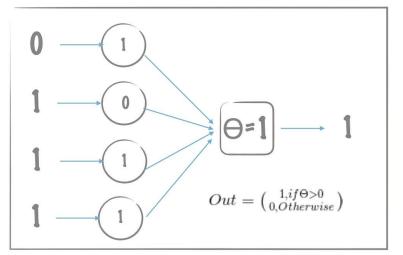
Δw1	Δw2	∆w3	Δw4
0	0	0	0
1	1	1	1

Training Set

	X	Y	Z	bias
	0	0	1	1
	1	1	1	1
	1	0	1	1
)	0	1	1	1
	0	0	1	1
	1	1	1	1
	1	0	1	1
	n	1	1	

T(out)

wl	w2	w3	w4
0	0	0	0
0	0	0	0
1	1	1	1


Weights

P(out)

	DU	t	
	0		
Ī	0		
	1		

DWeights

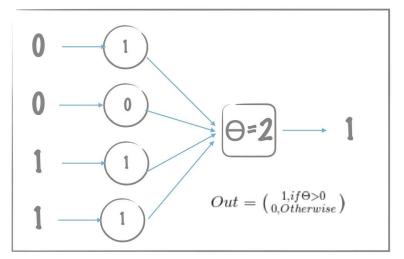
Δw1	Δw2	Δw3	Δw4
0	0	0	0
1	1	1	1
0	0	0	0

Training Set TO

X	Y	Z	bias
0	0	1	1
1	1	1	1
1	0	1	1
0	1	1	1
0	0	1	1
1	1	1	1
1	0	1	1
0	1	1	1

epoch 1

T(out)


w2	w3	w4
0	0	0
0	0	0
1	1	1
1	1	1
	w2 0	w2 w3 0 0

Weights

P(out)

out	
0	
0	
1	
1	

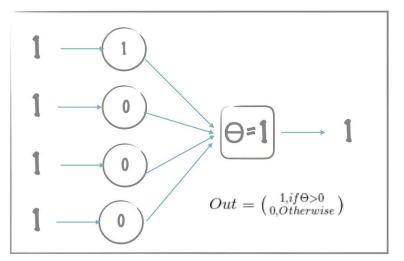
Δw1	Δw2	Δw3	Δw4
0	0	0	0
1	1	1	1
0	0	0	0
0	-1	-1	-1

Training Set

	X	Y	Z	bias
	0	0	1	1
	1	1	1	1
	1	0	1	1
•	0	1	1	1
)	0	0	1	1
	1	1	1	1
	1	0	1	1
	0	1	1	1

epoch 1

T(out)


wl	w2	w3	w4
0	0	0	0
0	0	0	0
1	1	1	1
1	1	1	1
1	0	0	0

Weights

P(out)

out	
0	
0	
1	
1	
0	

Δw1	Δw2	Δw3	Δw4
0	0	0	0
1	1	1	1
0	0	0	0
0	-1	-1	-1
0	0	0	0

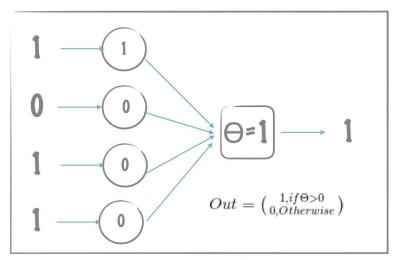
Training Set

	X	Y	Z	bias
	0	0	1	1
	1	1	1	1
	1	0	1	1
6	0	1	1	1
	0	0	1	1
	1	1	1	1
	1	0	1	1
	0	1	1	1

epoch 1

T(out)

	out
	0
	1
	1
	0
	0
I	1
	1
	0


Weights

w1	w2	w3	w4
0	0	0	0
0	0	0	0
1	1	1	1
1	1	1	1
1	0	0	0
1	0	0	0

P(out)

out	
0	
0	
1	
1	
1	
1	

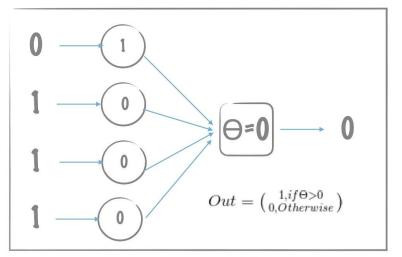
Δw1	Δw2	Δw3	Δw4
0	0	0	0
1	1	1	1
0	0	0	0
0	-1	-1	-1
0	0	0	0
0	0	0	0

Training Set Tlout)

X	Y	Z	bias
0	0	1	1
1	1	1	1
1	0	1	1
0	1	1	1
0	0	1	1
1	1	1	1
1	0	1	1
0	1	1	1

out	
0	
1	
1	
0	
0	
1	
1	
0	

Weights


	•		
wl	w2	w3	w4
0	0	0	0
0	0	0	0
1	1	1	1
1	1	1	1
1	0	0	0
1	0	0	0
1	0	0	0

P(out)

out	
0	
0	
1	
1	
1	
1	
1	

DWeights

Δw1	Δw2	Δw3	Δw4
0	0	0	0
1	1	1	1
0	0	0	0
0	-1	-1	-1
0	0	0	0
0	0	0	0
0	0	0	0

Training Set

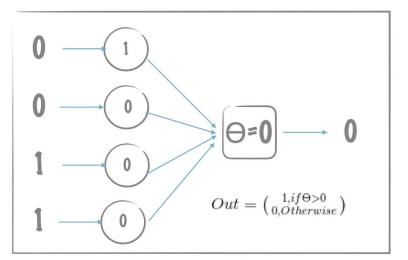
	X	Y	Z	bias
	0	0	1	1
	1	1	1	1
	1	0	1	1
•	0	1	1	1
)	0	0	1	1
	1	1	1	1
	1	0	1	1
	0	1	1	1

epoch

T(out)

out	wl	w2	
0	0	0	
1	0	0	
1	1	1	
0	1	1	
0	1	0	
1	1	0	
1	1	0	
0	1	0	
	a z		

Weights


P(out)

w4

out	
0	I
0	
1	Ī
1	Ī
1	Ī
1	Ī
1	
0	

AWeights

Δw1	Δw2	Δw3	Δw4
0	0	0	0
1	1	1	1
0	0	0	0
0	-1	-1	-1
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0

Training Set

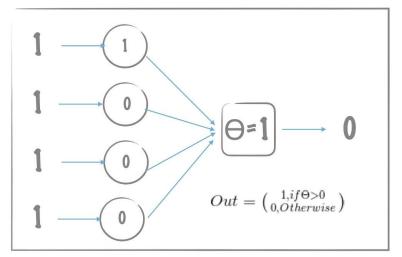
	X	Y	Z	bias
	0	0	1	1
	1	1	1	1
	1	0	1	1
6	0	1	1	1
	0	0	1	1
	1	1	1	1
	1	0	1	1
	0	1	1	1

epoch3

epoch4

T(out)

		-		
	wl	w2	w3	w4
	1	0	0	0
İ				


Weights

P(out)

0	U	i	
	0		

AWeights

Δw1	Δw2	Δw3	Δw4
0	0	0	0

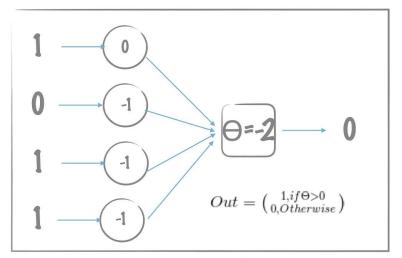
Training Set

X	Y	Z	bias
0	0	1	1
1	1	1	1
1	0	1	1
0	1	1	1
0	0	1	1
1	1	1	1
1	0	1	1
0	1	1	1

epoch3

T(out)

1000	-	7 71 717	
wl	w2	w3	w4
1	0	0	0
1	0	0	0


Weights

P(out)

out	
0	I
1	

DWeights

Δw1	Δw2	Δw3	Δw4
0	0	0	0
0	0	0	0

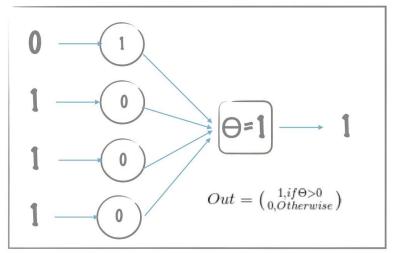
Training Set

X	Y	Z	bias
0	0	1	1
1	1	1	1
1	0	1	1
0	1	1	1
0	0	1	1
1	1	1	1
1	0	1	1
0	1	1	1

epoch3

T(out)

w1	w2	w3	w4
1	0	0	0
1	0	0	0
1	0	0	0


Weights

P(out)

out	
0	
1	
1	

DWeights

Δw1	Δw2	Δw3	Δw4
0	0	0	0
0	0	0	0
0	0	0	0

Training Set

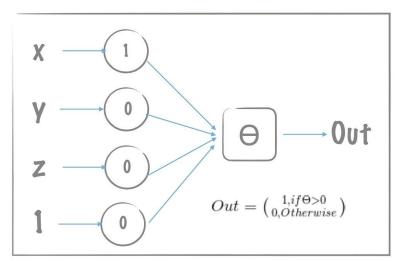
X	Y	Z	bias
0	0	1	1
1	1	1	1
1	0	1	1
0	1	1	1
0	0	1	1
1	1	1	1
1	0	1	1
0	1	1	1

epoch3

T(out)

out	wl	w2	w
0	1	0	0
1	1	0	0
1	1	0	0
0	1	0	0
0			
1			
1			
0			

Weights


P(out)

w4

00	t
0	
1	
1	
0	

AWeights

Δw1	Δw2	Δw3	Δw4
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0

Training Set

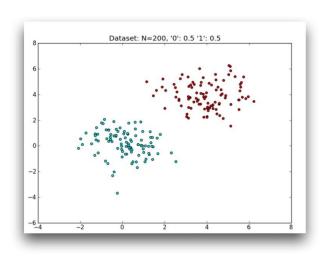
					E CO
		0	0	1	1
1.4		1	1	1	1
epoch3	5	1	0	1	1
		0	1	1	1
		0	0	1	1
epoch4	7	1	1	1	1
epocha		1	0	1	1
		0	1	1	1

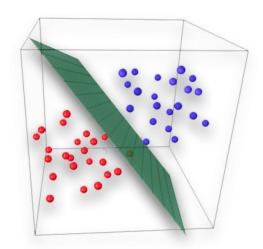
T(out)

9 4	orgi	110	
w1	w2	w3	w4
1	0	0	0
1	0	0	0
1	0	0	0
1	0	0	0
			wl w2 w3 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0

Woinhte

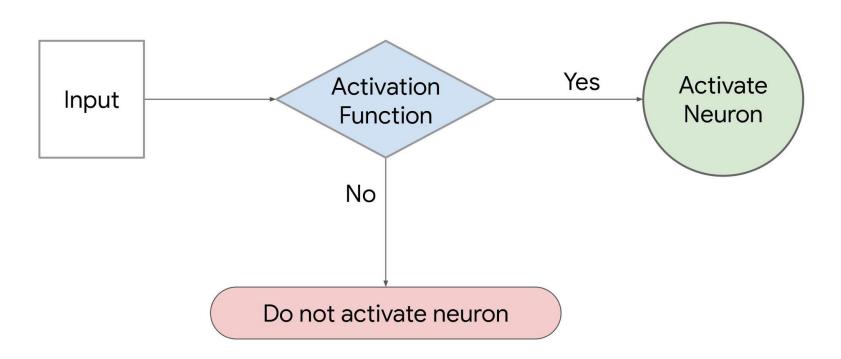
P(out)

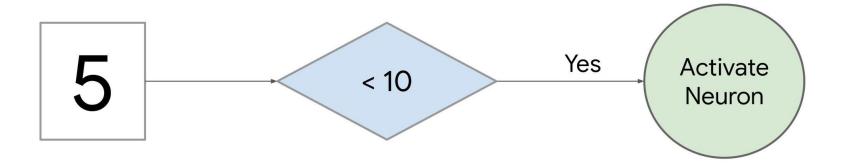

	out
I	0
Ī	1
Ī	1
	0


AWeights

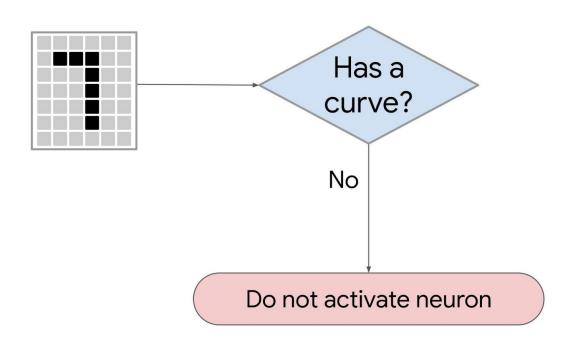
Δw1	Δw2	Δw3	Δw4
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0

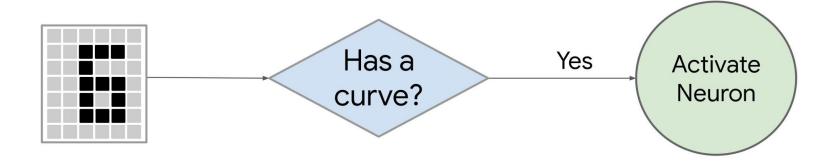
In epoch3, 'loss' is 0. So, we can assume that Perceptron has learnt the pattern

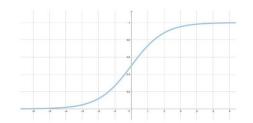

We trained our Perceptron Model



On a Linear Separable Pistribution

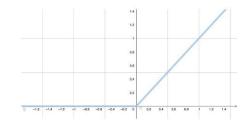



Do not activate neuron



Do not activate neuron

Common Activation Functions


Sigmoid activation function converts the weighted sum to a value between **0** and **1**.

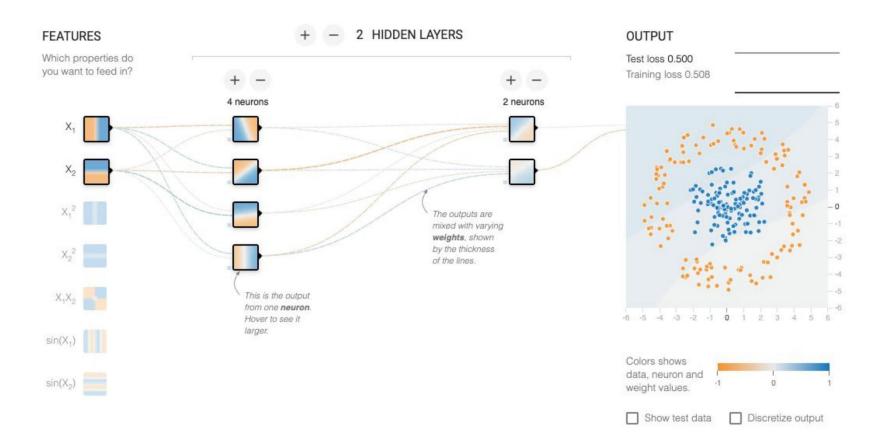
$$F(x) = \frac{1}{1 + e^{-x}}$$

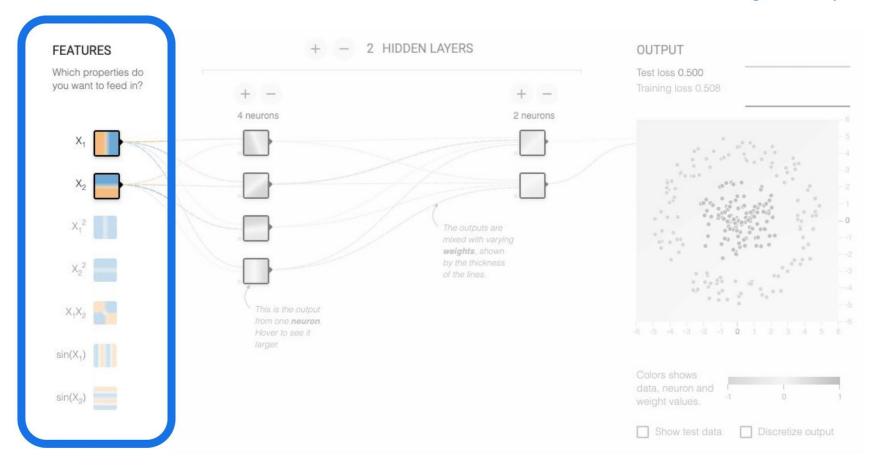
ReLU (Rectified Linear Unit) activation function often works a little better than a smooth function like the sigmoid, while also being significantly easier to compute.

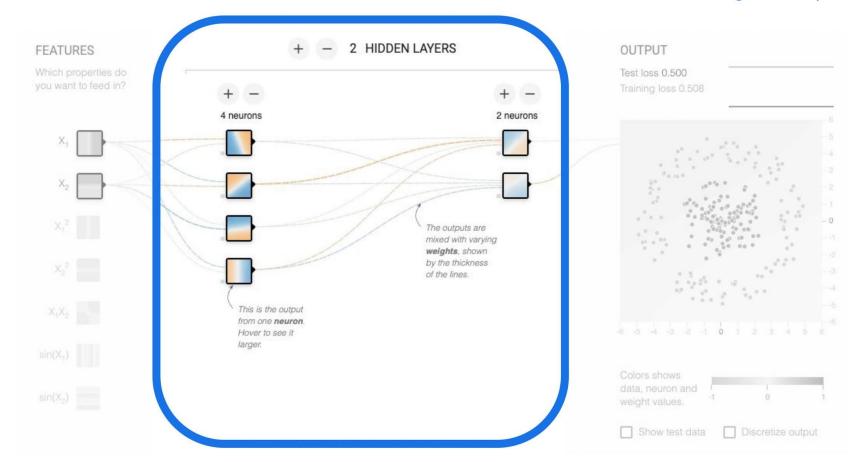
$$F(x) = \max(0,x)$$

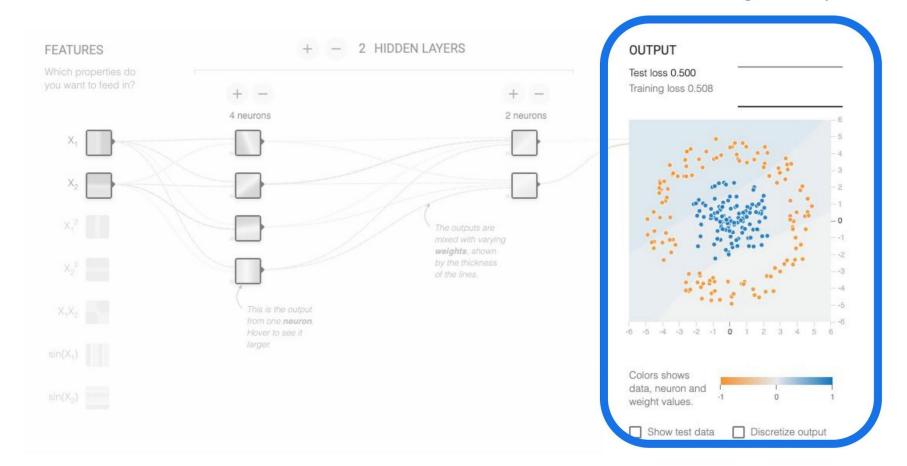
Getting Bored?

Let's Play with Neural Networks


But where to play in Edusat Lab?




Let's play in the Tensorflow Playground


http://bit.do/BPITPlau

Still feeling Bored?

Let's play an awesome game now.

http://bit.do/BPITPlau1

- Wanna play more ? Visit <u>g.co/teachablemachine</u>
- See a Neural Network Demo at http://bit.do/BPIT1

Let me answer your Questions now.

Finally, it's your time to speak.

Danke Scheon

Questions? Any Feedbacks? Did you like the talk? Tell me about it.

If you think I can help you, connect with me via

Email: ayonroy2000@gmail.com

LinkedIn / Github / Telegram Username: ayonroy2000

Website: https://AYONROY.ML/