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Hello BPITians!

| am Ayon Roy

B.Tech CSE ( 2017-2021)

Ex-Summer Intern at MatelLabs, Bengaluru ( World’s First Horizontal Al Startup)

Email : ayon.roy2000@gmail.com
Telegram / Github / LinkedIn Username : ayonroy2000
Website : https://AYONROY.ML/

If you haven’t heard about me yet, you might have been living under the rocks. Wake up !!


https://ayonroy.ml/
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Agenda ( 4-09-2019 )

Introduction to Structure and operation of neural network
Introduction to Tensorflow Playground

Activity: TensorFlow Playground Neural Network Exercises
Activity: Teachable Machine and the Limits of Neural Networks
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Neural Networks
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Let’s Play

g.co/teachablemachine

If privacy is not an issue,
please use your laptop’s webcam for this activity.

e See a Neural Network Demo at http://bit.do/BPIT1



http://g.co/teachablemachine
http://bit.do/BPIT1



http://www.youtube.com/watch?v=aircAruvnKk
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wWhat are
Neural Networks ?
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Neuvral Networks

output layer

input layer ¢

Its like Perceptrons are together in a defined fashion
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Two Layered Neural Network

Input 1

hl
><Q\Q— Output
npu’r @ Activation

These array of perceptrons form the Neural Nets
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—_— dog (0.01)
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Computer System inspired by biological
networks of neurons that learn
progressively i.e which improves

performance to do tasks; by considering

examples generally without task specific
programming.
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why
Neural Networks ?

=T
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Problem before Neural Networks were
introduced

Computers used to follow a set of instructions to solve a problem

But what now ?

Neural Networks learn by example. So now computers can do things
what we don’t exactly know how to do.
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Motivation behind
Neural Networks ?
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Application of Neural
Networks
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Speech Recognition

e Multilayer networks with recurrent connections
e Kohonen self-organizing feature map

Character Recognition

e Backpropagation neural networks.
e Neocognitron

Signature Verification, Face Recognition etc.
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But how it works ?
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Single Layer &
Multilayer Perceptron
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Perceptron

The elementary entity of a nevral network.

The most basic form of neural network which can also learn
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Perceptron

A Basic Linear diseriminant Classifier
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How Perceptron Work

©=(4*0.3 + 2+-0.9) + (2*0.19)

2—(-05) e — 0
\ Activation
2 —(015 Function

[ 1ifes0
Out = (0,0the-rwise



Activation Function

Activation function Equation Example 1D Graph
Unit step 0, z<0, Perceptron ‘
(Heaviside) #z) = {().5 z=0, variant —[:
1, z>0,
Sign (Signum) =1 Z2il Perceptron T
P2) = {()_ z2=0 variant —_—t
1, z>0 A—
Linear Adaline, linear
P2) =z regression 7,4.
Piece-wise linear 1, z2 1, Support vector P
d)=3z+L -1<z<i machine p— < [
0, z< —-%,
Logistic (sigmoid Logistic
gistic (sigmoid) . gistic  —
P2) = o regression, e
Multi-layer NN
Hyperbolic tangent & —e Multi-layer NN
¢(¢) - et 4 et C.

\

Learn with

Google Al | Explore ML

S



LLLLLLLLL

Google Al | Explore ML

Training a Perceptron

Let’s train a Perceptron to miwmic this pattern

Training Set Tlout)
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Training a Perceptron

Perceptron Model

@
@Q@% -
{)@7 hotivation

Function

_ Lifeso
Out = (0,0the-muise

1—
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Training a Perceptron

Training Rules:  Wi= Wi+ AWi
AW = -y * (targetf output - perceptron output)*X
n is learning rate for perceptron

{)
@QQ@ ot

‘Q/Acflvaflon
1 w4 Function

_ Lifeso
Out = (0,0the-rwise
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Training a Perceptron

Let's learn wi such that it minimizes the squared error

. 1
Ew| = > (ta —od)2
cD

oE
Aw; = —1—
aW,'

On simplifying

Aw,=n E(td —0,)Xy

deD

28
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X —(w

(=

Wi = Wi + AWi
AWi = - * [Plout) -T(Qut )1 * xi

LA @ n is learning rate for perceptron
= 6 |—0ut
bias—{(w)”

Training Set Tlout)

S Lifes0
Out = (U.O{hrru'zm’)

Assign random values to
Weight Vector(CW1,W2,W3W4])
epoch 1

epoch 2
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Wi = Wi + AWi
0 { o AWi = - * [Plout) -T(Qut )1 * xi
0 i is learning rate for perceptron

] : Out— 1,704 )

0 Otherwise

TrammgSe’r Tlout)  Weights P(ﬂ AWeights

w2 w3 wh

Ml A2 w3 Awd

0 0 0 0 0o 0 0 0
epochl(

;
epochZ(

0




epoch 1

epoch 2

( Lif©>0 )

0.0therwise

Training Set T(

O = - O O - O

|l | ) | g | gt | o PR g
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out)
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Wi = Wi + AWi
AWi = -y * [P(out) -T(Qut )1 * xi
1 is learning rate for perceptron

P(ou’r) | AWeigh’rs |
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@
@

Wi = Wi+ AWi
0 AWi = - * [Plout) -T(Qut )1 * xi
6= 0 1 is learning rate for perceptron

(o)

1—()
Training Set Tlout) Weights Plout) AWeights

Lif©=>0 )
0,0therwise

Out = (

epoch 1

epoch 2
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=0
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Wi = Wi + AWi
] , AWi = -y * [Plout) -T(0ut 11 * xi
O= ] ' 1 n is learning rate for perceptron

)
IR0

Training Set Tlout) Weights Plout) AWeights

: - 1if©=0
Out = (“.(‘)(h”u'ht )
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0
, Wi = Wi + AWi

@ , AW = -n * [Plout) -T(0ut 11 * xi

6=2 1 1 is learning rate for perceptron

0

1)

Training Set Tlout) Weights Plout) AWeights

- - Lif©=>0
Qut = (‘,l.()fl1|!11'1.~r )
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Wi = Wi + AWi

AWi = -n * [P(out) -T(Out )1 * xi
n is learning rate for perceptron

Plout)
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Wi = Wi + AWi
0 { o AWi = - * [Plout) -T(Qut )1 * xi
1 is learning rate for perceptron

] : Out_ ife>0. )

TrammgSe’r T(ouﬂ P(ﬂ AWeights

w2 wi wé wl MwZ A3 A4

0 0 0 0 0 0 0

epoch?

epoch4

0
1
1
0
0
1
1
0
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epoch4
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Wi = Wi + AWi
AWi = -n * [P(out) -T(Out )1 * xi
1 is learning rate for perceptron

Training Set Tlout) Weigh’rs

0
1
1
0
0
1
1
0

Plout) | AWeigh’rs |

— o — o — o= o=
ety . e ) s — Gt —
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Wi = Wi + AWj
AWi = - * [Plout) -T(Qut )1 * xi
O=- 0 1 is learning rate for perceptron

()
@
)

Out = ( lAi_f(l)-;.‘l"’

1 @ 0,0therwise )

Training Set Tlout) Weights Plout) AWeights

epoch?

epoch4
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Wi = Wi + AWi
AWi = -n * [P(out) -T(Out )1 * xi

O=1 | 1 n is learning rate for perceptron

Lif©=>0
0,0therwise )

=0
@

(o)

ERO

Training Set Tlout) Weights Plout) AWeights

Out = (
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Wi = Wi + AWi
AWi = -n * [P(out) -T(Out )1 * xi

n is learning rate for perceptron
S l Out ! P

Out = (

=g
@
: )

ERO

Training Set Tlout) Weights Plout) AWeights

Lif©=>0 )
0,.0therwise

0 0 1 1 0
111 1 1
epoch3 1o 1 1 1
0o 1 1 1 0
0 0 1 1 0 i i
evochd SEEEEE B In epoch? ‘loss’ is 0. So, we can assume
p 1ot 1 I that Perceptron has learnt the pattern
0o 1 1 1 0
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We trained our Perceptron Model

On a Linear Separable Distribution
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Perception of Artificial Neuron

B _ w\ Yes Activate
w:y Neuron

No

( Do not activate neuron )
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Perception of Artificial Neuron

/\ Yes .
5 <10 ,?\lctlvate
\/ sHren

( Do not activate neuron >
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Perception of Artificial Neuron

e ) Has a Activate
= wve? Neuron
[

No

y

( Do not activate neuron >
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Perception of Artificial Neuron

Has a Yes Activate
curve?

Neuron

i

< Do not activate neuron >
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Common Activation Functions

Sigmoid activation function converts the weighted sum to a value between 0 and 1.

1

Fo)=1re=

RelLU (Rectified Linear Unit) activation function often works a little better than a smooth function
like the sigmoid, while also being significantly easier to compute.

F(z) = maz(0,x)
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Getting Bored ?
Let’s Play with Neural Networks

But where to play in Edusat Lab ?
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Let’s play in the
Tensorflow Playground

http://bit.do/BPITPlay
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http://bit.do/BPITPlay

FEATURES +

Which properties do
you want to feed in?

+
|

WX N This is the output
from one neuron.
Hover to see it

larger.
sin(X,)

sin(X,)

2 HIDDEN LAYERS

 The outputs are
mixed with varying
weights, shown
by the thickness
of the lines
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OUTPUT

Test loss 0.500
Training loss 0.508
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Colors shows
data, neuron and !
a1 1

weight values ?

[ Showtestdata [] Discretize output



FEATURES

Which properties do
you want to feed in?

4 neurons

2 HIDDEN LAYERS

2 neurons
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OUTPUT

lest loss 0.500
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— 2 HIDDEN LAYERS OUTPUT

3 0.500

FEATURES +

— + -

4 neurons 2 neurons

* The outputs are
mixed with varying
weights, shown
by the thickness

of the ines




FEATURES

} -

4 neurons

2 HIDDEN LAYERS
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OUTPUT

Test loss 0.500
Training loss 0.508

Colors shows

data, neuronand !
N 1

weight values

[] Show testdata  [[] Discretize output
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Still feeling Bored ? Google Al Explore ML

Let’s play an awesome game now.

http://bit. do/BPITPIog_

e Wanna play more ? Visit g.co/teachablemachine
o See a Neural Network Demo at http://bit.do/BPIT1



http://bit.do/BPITPlay1
http://g.co/teachablemachine
http://bit.do/BPIT1
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Let me answer your Questions now.

Finally, it’s your time to speak.
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Danke Scheon

Questions ? Any Feedbacks ? Did you like the talk?
Tell me about it.

If you think | can help you,
connect with me via

Email : ayonroy2000@gmail.com
LinkedIn / Github / Telegram Username : ayonroy2000
Website : https://AYONROY.ML/



https://ayonroy.ml/

